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Executive Summary 
 
Silica is one of the most common minerals on earth. It occurs in different forms; respirable 
crystalline silica (RCS; i.e., quartz particles that are less than 4 microns in diameter) is a 
confirmed cause of lung cancer and is also linked to the serious fibrotic lung disease silicosis. In 
Canada 570 lung cancers per year are caused by occupational RCS exposure, with 56% of 
these occurring in construction. The very low occupational exposure limit (OEL) for RCS reflects 
its high toxicity.  
 
It has been estimated that there are 429,000 workers in Canada who are exposed to RCS and 
the largest fraction of workers exposed (62%) is in the construction industry. In Manitoba (MB), 
over 47,000 people are employed in the construction sector. Crystalline silica is present in 
many common construction materials and construction work involves mechanical tasks that 
release fine particles of RCS dust to the air.  There is a demonstrated need for construction 
employers to reduce exposures to RCS. In order for employers to keep their workers’ 
exposures below the OEL they need to be able to quantify exposure. This allows them to 
compare their exposure levels to the OEL as well as select appropriate control measures and 
personal protective equipment. However, construction worksites are highly dynamic, the 
physical environment is constantly changing and different work and tasks occur in different 
time and space patterns and contractors frequently move between worksites. This can make it 
difficult for employers to measure and understand the exposure levels that might be present in 
their work places.  
 
To assist construction employers with exposure estimation and with risk assessment, the 
authors had previously developed a database of construction related RCS exposure data, and 
models for estimating RCS exposures in construction for risk assessment purposes. These 
formed the basis of the web-based tool that uses objective, quantitative exposure data that has 
been previously obtained and resides in a database in the preparation of “exposure control 
plans” (ECP’s). The ECP clearly conveys a quantitative assessment of risk, and estimates of the 
risk reduction afforded by different control measures, without having to undertake expensive 
and time-consuming field sampling for each new job. The tool was originally developed for the 
British Columbia (BC) construction industry. There has been considerable interest in the tool 
from outside of BC, and the developer of the on-line tool (The BC Construction Safety Alliance) 
has endeavoured to make the on-line tool more widely available for other jurisdictions in 
Canada. 
 
This project was designed to reduce the risk of RCS-related disease in Manitoba by (i) 
increasing our understanding of RCS exposure through exposure monitoring on MB 
construction worksites; (ii) by improving the on-line tool through improvements to its design 
and readying it for use in Manitoba, and (iii) through KT activities to raise awareness and inform 
targeted groups about the RCS hazard and its control. 
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We undertook a comprehensive assessment of RCS exposure in Manitoba construction 
worksites between June 2018 and August 2020. A total of 121 measurements were made in 14 
different company sites. Seventy-four measurements (61%) were obtained in urban Winnipeg, 
and the rest in smaller municipalities of Manitoba. Supplementary data was collected for each 
measurement to allow for statistical analysis of the determinants of exposure to RCS, in 
particular to examine regional differences in exposure levels.  
 
Overall RCS had a geometric mean (GM) of 0.033 mg/m3 which is higher than the regulatory 
OEL of 0.025 mg/m3. Renovation work tended to have higher exposure levels and other types 
of construction project (GM = 0.084 mg/m3) and demolition tasks tended to have the highest 
exposures (GM = 0.61 mg/m3) followed by breaking and grinding. Working with cement 
resulted in the highest mean measured exposures (GM=0.083 mg/m3). Working in restricted 
spaces (versus indoor/outdoor) was associated with the highest exposure levels (GM = 1.132 
mg/m3). Notably, use of individual controls mounted on tools did not appear to greatly reduce 
exposure levels. However, when both exhaust ventilation and wetting were used together 
exposure levels were reduced by about half.  
 
Determinants of exposure modeling showed that RCS exposure levels in Manitoba in this study 
were approximately half that of those found in BC, but double those found in Alberta (AB). 
These differences may be attributable to differences in work practices, but also source material 
composition, and regulatory environment in the different provinces (noting workplace health 
and safety is mostly provincially regulated). 
 
The current statistical prediction model was improved in two areas. First, new data from BC, AB 
and MN as well as from an updated literature review were added to the model’s database. 
Second, updated statistical programming improved the estimation of uncertainty around the 
model’s predictions. The prediction model was also improved to include two risk analysis 
frameworks to communicate the exposure risks based on the above model prediction:  (i) the 
risk assessment framework from British Columbia was implemented, where the main risk metric 
is the geometric mean (GM) of the distribution of workers’ exposures, and risk is considered 
controlled if the GM is below the OEL.; and (ii) the risk analysis framework from the American 
Industrial Hygiene Association (AIHA), where the main risk metric is the 95th percentile (P95) of 
the distribution of workers’ exposures and risk is considered controlled if P95 is below the OEL. 
The statistical model was also improved to combine information from the silica prediction 
model with a new data set of exposure measurements which might have been collected for a 
particular situation. This allows the model to use the large amount of archived data held in the 
database (maybe hundreds of data points) efficiently while also taking into consideration the 
current exposure measurements (maybe just a handful) specific to the risk assessment at hand. 
Finally, these advances were combined into a new, improved user interface. A prototype can 
be viewed at https://silica.expostats.ca/ 
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The authors make recommendations with respect to: 
 

• approaches to reducing RCS exposure hazards. Notably use of LEV and engineering 
controls did not demonstrate dramatic reductions in exposure levels. This suggests that 
the mere presence of controls may not be sufficient; these interventions must be 
implemented effectively. Also, that quantitative risk assessments can be used to plan 
administrative controls (such as job rotation) to reduce long-term average exposures 

• improving hazard awareness through knowledge translation. Study data can be used 
for training and education of (i) silica health hazard; (ii) hazardous exposures to RCS; (iii) 
controlling RCS exposure. Target audiences may include employees, employers, 
apprenticeship trainers, health and safety regulatory officers, claims adjudicators and 
others in compensation and prevention. 

• upgrades to the BC Construction Safety Alliances “Silica Control ToolTM”, as well as the 
new end-user interfaces for risk assessment. 

 
Future work should include additional sharing of results from this project with various 
stakeholders in Manitoba and the scientific community through peer-reviewed publications, 
and seeking funding and partners to integrate silica control tool improvements into the BCCSA 
tool. 
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1 Introduction & Overview 
 

1.1 Silica Hazard 
 
Silica is one of the most common minerals on earth. It occurs in different forms; respirable 

crystalline silica (“RCS”, i.e., ∝ −	quartz particles that are less than 4 microns in diameter) is a 

confirmed cause of lung cancer (IARC, 2012). RCS exposure is also linked to the serious fibrotic 

lung disease silicosis (Bang et al., 2015), and has possible links to stomach and gastric cancers, 

COPD and autoimmune disease (NIOSH, 2002). Its very low occupational exposure limit (OEL, 

TLV®-TWA 0.025 mg/m3) reflects its high toxicity. It has been known as a health concern for 

centuries but remains responsible for significant disease burdens in working populations, even 

in modern society with advanced OHS regulatory systems. 

 

1.2 Silica and construction 
 
There are an estimated 429,000 workers in Canada who are exposed to RCS (CAREX Canada, 

2021). The largest fraction of workers exposed to RCS is in the construction industry, where 

62% of workers are estimated to be exposed. In Manitoba, over 47,000 people are employed 

in the construction sector (Statistics Canada), suggesting almost 37,000 Manitobans might be 

at risk from RCS exposure. In addition, there are many thousands more in mining, agriculture 

and manufacturing jobs where RCS exposures are also likely. Previous work by the applicants 

(and colleagues) at the Occupational Cancer Research Center estimates that in Canada 570 

lung cancers per year are caused by occupational RCS exposure, with 56% of these occurring 

in construction employees (OCRC, 2019).  

 

Crystalline silica is present in common construction materials such as concrete, cement, brick, 

tiles, drywall, rock, sand and asphalt. Construction work involves mechanical tasks that 

generate fine RCS dust particles that enter the air (Beaudry et al., 2013). A recent study of RCS 

exposure in Alberta found that overexposure to RCS is common in construction. Among 

workers involved in construction of new commercial buildings, seventy-seven percent of 
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exposures were above the OEL. Overexposures were also common in other construction 

sectors, including demolition (forty percent above the OEL) and earth moving/road building 

(twenty five percent above the OEL; Radnoff et al., 2014).  

 

Employment in the construction industry in Manitoba is forecast to remain steady over the next 

decade, but with a turnover of approximately 20% (Build Force Canada, 2021) 

 

1.3 Determinants of RCS Exposure  
 
Difference between work task is a major contributor to the variability in construction RCS 

exposures (Beaudry et al, 2013).  For example, tasks such as demolition, abrasive blasting, 

tuck-pointing using grinders, jackhammers, and drilling on materials like concrete are common 

tasks with high RCS exposures across different studies (Flanagan et al., 2003, 2006; Rappaport 

et al., 2002; Sauvé et al., 2012). Exposure levels may also be expected to vary significantly due 

to differences within tasks, work techniques, control measured, project type, sampling 

duration, and other environmental factors (IARC, 2012; Radnoff et al., 2015). The use of 

engineering controls such as local exhaust ventilation and wet dust suppression have been 

found to reduce exposure, while working indoors can increase RCS exposure (Rappaport et al., 

2002; Croteau et al., 2004; Sauvé et al., 2013).  

 

1.3.1 Regional variability 
 

Regional variability in RCS exposure levels might be anticipated, for example due to policy and 

regulatory differences, and particularly in Canada where OHS regulation (such as OEL setting) 

is a provincial responsibility. There may also be regional differences that occur due to the 

geologic differences in source materials such as gravel and sand. High percentages of quartz 

are commonly found in sedimentary rocks (i.e., sandstones) that are more typical of rock types 

in Alberta and Manitoba than BC (Atkinson & Atkinson, 1978; Carmichael, 1989; Heaney & 

Banfield, 1993; IARC,1996; Ross et al., 1993; US Bureau of Mines, 1992). Further there may be 
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regional differences related to overall “safety-culture” stemming from workforce 

demographics, training etc. 

 

1.4 RCS Risk Assessment 
 
Exposure monitoring is the gold standard for a comprehensive worksite risk assessment, but 

construction sites are complex and highly dynamic workplaces with high day-to-day and site-

to-site variability, complicating exposure assessment. Many different work and tasks occur in 

different time and space patterns and sub-contractors move frequently between worksites. This 

can make it difficult for employers to measure interpret and understand RCS exposure levels 

that might be present in their workplaces. 

 

In response to this challenge, the authors in collaboration with WorkSafeBC and the BC 

Construction Safety Alliance (BCCSA) developed a novel, on-line risk assessment tool for RCS 

exposure (the “Silica Control ToolTM”, SCT) for use across the construction sector (Table 1). The 

SCT provided a scientifically sound aid to the introduction of new regulation in BC that 

permitted the substitution of actual exposure measurement data with “objective air monitoring 

data”, collected at “equivalent work operations.” This allowance encouraged the introduction 

of quantitative risk assessment in a construction work environment where routine exposure 

monitoring would be very challenging for the employer.  

 

Table 1: Benefits of the quantitative RCS risk assessment SCT for different stakeholder groups 

 

Employee Employer Researcher/policymaker 
Risk Awareness Risk Awareness Exposure data collection 
Risk awareness Identification of best 

practice 
Education tool for regulators 

Selection of appropriate 
control 

Cost and time efficiency Intervention tool for officers, 
demonstrate best practice 

Clear ECP to follow Standardized practice Quicker uptake of best practices for an 
ALARA substance 

 Comparison data (inter-
site, inter-province, etc.) 
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The SCT has a continually updatable database of RCS exposure measurements. The database 

was used to derive a predictive statistical model that can generate exposure risk estimates 

(Figure 1). The statistical model is embedded in an adaptive web-based application that can be 

run on common platforms. At the outset, the SCT was based on largely historical exposure 

data obtained from a database to which author JL contributed (Beaudry et al. 2013). 

Subsequently, the exposure database has been expanded with contemporary measurements 

representing conditions in British Columbia and Alberta workplaces, and more up-to-date 

worksite environments. 
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Figure 1: Silica Control Tool Components. The predictive equation (green) is generated from RCS data collected 
from published literature but also contemporary exposure data collected by the authors in BC, AB and now, 
Manitoba. 

 

The earliest versions of the SCT were designed with “frequentist” statistical models that had 

limitations in how variability (“uncertainty”) around an exposure estimate could be calculated 

and presented to the end-user. The current SCT (Davies & Gorman-Ng, 2020) estimates 
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uncertainty by running the predictive equation many hundreds of times, using a technique 

called “bootstrapping”, each time varying input parameters based on their underlying 

distribution. The estimated (predicted) exposure concentrations for a given work scenario is 

then presented to the end user as a single number (the point estimate from the predictive 

equation plus the 95% confidence interval from the bootstrap process).  

 

There is scope for this approach to be modernized with Bayesian statistics. Exposure scientists 

have developed improvements in methodology for estimating risk using Bayesian statistics (a 

“non-frequentist” approach), and in improving how we communicate the complicated 

concepts around exposure risk (Lavoué, et al, 2018). Bayesian approaches permit calculation of 

simpler probabilistic risk estimates; such probabilistic estimates are considered to be easier to 

interpret than the estimates currently used in the SCT. 

 

Furthermore, while the current SCT provides information from the historical database, users 

who have collected their own measurements do not have means to combine them with the 

tool’s output. There are, however, established techniques (e.g., Bayesian approaches) that 

would allow us to extract the maximum information simultaneously from both historic and 

contemporary data. Bayesian approaches would permit end-users of the SCT (and other tools 

designed like it) to benefit from the data stored in the exposure database while combining it 

with their own company’s exposure data, for example.  

 

1.5 Study Objectives  
 

 
There is a demonstrated need for construction employers to reduce exposures to respirable 

crystalline silica (RCS). In order for employers to keep their workers’ exposures below the OEL 

they need to be able to quantify exposure. This allows them to compare their exposure levels 

to the OEL as well as select appropriate control measures and personal protective equipment 

(Kromhout, 2016). This poses a challenge for large companies with in-house occupational 
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health and safety staff and an even greater challenge for small and medium sized enterprises 

(SMEs) who may not have in-house OHS expertise.  

 

The project aimed to aid risk reduction for RCS-related disease in Manitoba and other 

provinces by increasing the understanding of RCS exposure through exposure monitoring on 

Manitoba construction worksites, by improving the online tool through improvements to its 

design, and through knowledge translation activities to raise awareness and inform targeted 

groups about the RCS hazard and its control. 

 
Study Objectives:  
 

a. Overall, to improve understanding of RCS hazard in MB construction industry 

b. To characterize RCS exposure situation in MB construction, and compare to other 

Canadian regions 

c. To improve RCS exposure data holdings vis-à-vis regional, contemporary and new 

exposure scenarios 

d. Improve modeling and estimation methodology and evaluate, both generally, and 

with respect to use in Manitoba 
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2 Methodology 
 

2.1 Ethical Review 
 
Ethical approval of this study was provided by the UBC Behavioural Research Ethics Board, 

reference number H18-01017. 

 
2.2 Exposure Monitoring 
 

2.2.1 Recruitment 
 

Companies were recruited through industry safety associations such as the Construction Safety 

Association of Manitoba (CSAM), and individual contacts. Individual employees were recruited 

on-site and selected based who was performing targeted work. 

 

To focus our sampling efforts, “common silica -generating processes” (CSPs) were identified 

through focus groups of construction experts, and then reviewed in a survey of MB 

construction experts. For exposure sampling, we focused on these CSPs, including both 

controlled and uncontrolled exposure where possible (see full list of CSP’s in Appendix 1).  

 

2.2.2 Exposure sampling 
  
Sauvé et al (2012) found that statistical models derived from task-based RCS exposure samples 

were more predictive of RCS exposure levels than models based on full-shift samples, so we 

aimed to collect task-based samples in most instances. Full-shift sampling was conducted when 

workers were conducting the same task for the entire day, and when we aimed to characterize 

the exposure associated with a job title (e.g., concrete plant operator) that was not directly 

involved in generating RCS. We defined “task” as including all activities related to the task 

from job set-up to final clean-up.  
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Sampling for RCS (e.g., NIOSH method 7500) typically involves the use of a cyclone at flow 

rates ranging from 1.7 to 2.5 liters per minute (LPM) to sample the respirable fraction of dust. 

However, when sampling durations are much shorter than eight hours, flow rates below 2 LPM 

may not collect sufficient quantities of crystalline silica to be detectable by chemical analysis 

(e.g., a typical analytical limit of mass detection is 0.005 mg). To address this, we used a “high-

flow method” when sampling durations were short and/or ambient concentrations were 

expected to be low. The high-flow method we used was described by Stacey and Thorpe (HSE, 

2010) and used a parallel particulate impactor (PPI) at a flow rate of 8 LPM (SKC Inc., Eighty-

Four, PA, USA). Thirty-five mm PVC filters were used with both cyclone and PPI sampling 

heads. Approximately 10% percent of samples were designated as field blanks. We also 

collected comprehensive supplementary information on task, material, tool, work environment, 

use of exposure controls, and characteristics of the construction company and worksite (see 

Appendix 2) and took photographs to aid later interpretation of data. 

 

All samples were analyzed by an AIHA Accredited industrial hygiene laboratory (Bureau Veritas 

North America, Novi, MI, USA). Samples were analyzed for cristobalite and quartz by x-ray 

powder diffraction (NIOSH method 7500). All samples were blank-corrected. Unless otherwise 

stated, RCS exposures combine quartz and cristobalite concentrations. 

 

2.3 Data Analysis and Database Updates 
 
2.3.1 Descriptive statistics 
 
Data analysis of Manitoba exposure data was conducted using R version 4.1.0. Inspection of 

data distributions indicated that RCS concentrations were log-normally distributed so all 

analyses were performed on log-transformed data. RCS concentrations were summarized with 

geometric mean, geometric standard deviation, and minimums and maximums. Samples below 

the limit of detection (<LOD or ND) were substituted with LOD/2). 
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2.3.2 Exposure modeling 
 

Multiple linear regression models were built after adding Alberta and BC data for regional 

comparison purposes. We selected variables for the regression model by first conducting 

bivariate analyses (chi-square and ANOVA tests). Correlations were explored to examine 

potential multicollinearity. Retained independent variables were included in a multivariable 

forward-stepwise linear regression model using the OLSRR package in R. These variables 

included province, task type, control, material, work environment, sampling duration, project 

type and activity sector. Many of these variables were previously identified by Sauvé et al. 

(2012) as determinants of RCS exposure in the construction industry and used to develop the 

original BCCSA Silica Control Tool (Davies and Gorman-Ng, 2020). The dependent variable 

was the log-transformed RCS concentration. Additional models restricting data to only task-

based samples, excluding full-shift samples, were also conducted to test the robustness of the 

model. Task-based samples are taken to assess exposure associated with a particular task and 

may be more closely related to the “task type” variable, whereas full-shift samples may vary in 

the amount of time spent doing silica generating activities. Partial F-tests were conducted for 

all independent variables included in the final models.  

 

2.4 Improvements to Exposure Risk Assessment Tools  
 
2.4.1 Improvement of the current SCT prediction model 
 
The current statistical prediction model was improved in two areas. First, new data from BC, AB 

and MN as well as from an updated literature review were added to the model’s database. 

Second, meta-analysis and multi-model inference theory were used to improve the estimation 

of uncertainty around the model prediction. This procedure allows to obtain a model 

prediction in the form of a geometric mean of silica exposure with a standard error, which is 

both easier to manipulate and less computationally costly than the bootstrap procedure 

mentioned above. 
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2.4.2 Improvement of the risk metrics calculated from the SCT model 
 
Two risk analysis frameworks were employed to communicate the exposure risks based on the 

above model prediction.  

 
First, the risk assessment framework from British Columbia was implemented, where the main 

risk metric is the geometric mean (GM) of the distribution of workers’ exposures (WorkSafeBC, 

2021). Risk is considered controlled if the GM is below the OEL. The point estimate and 

standard error of the exposure model predicted GM described above is used to show the 

predicted geometric mean, a 95% upper confidence limit, as well as the probability that its true 

underlying value is above the OEL, i.e., the probability of non-compliance. 

 
Second, the risk analysis framework from the American Industrial Hygiene Association (AIHA) 

was implemented, where the main risk metric is the 95th percentile (P95) of the distribution of 

workers’ exposures (Jahn et al., 2015). Risk is considered controlled if P95 is below the OEL. 

Furthermore, the AIHA proposes to further separate risk into management bands depending 

on the value of P95 compared to the OEL (see Figure 2). 

 

 
Figure 2: AIHA Risk Management Bands (from Jahn, et al., 2015) 

 

If we had access to the actual exposure distribution, i.e., all exposure levels for all workers in an 

exposure group over a stable period of time, we would know the true value of P95 and it 

would be straightforward to select the right management category. Unfortunately, we estimate 
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P95 from a very limited sample from this population, and therefore need statistical tools to 

evaluate the associated, and usually large, uncertainty. Therefore, the output created for this 

project provides a probability for each of the management bands: the probability that the true 

underlying P95 of exposure is in the band, summing to 100% across the 5 bands. The 

probability of the highest risk band (red band, 4+) is the probability of non-compliance, i.e., the 

probability that the 95th percentile of the distribution of exposures is above the OEL.  The 95th 

percentile of a lognormal distribution depends on both the geometric mean (GM) the 

geometric standard deviation (GSD). The prediction model (see 2.4.2) provides point estimate 

and uncertainty for GM, but not for GSD. Therefore, we propose to use a typical workplace 

GSD value of 2.5, surrounded by uncertainty so that 90% of possible values are between 1.7 

and 4.7 (Lavoué et al., 2018). The point estimates and uncertainties for GM and GSD are then 

combined to estimate a point estimate for P95, a 95% upper confidence limit, and the 

probabilities associated with each AIHA category. 

 
2.4.3 Bayesian model for combining the model prediction with a “new” silica dataset  
 
Bayesian statistics are a field of statistics of increasing use in occupational hygiene (Banerjee et 

al., 2014; Hewett et al., 2006; Lavoué et al., 2018; Quick et al., 2017). In essence, each 

parameter that we want to estimate must be defined a priori as a probability distribution: For 

example, for the 95th percentile of the distribution of exposures, we could state that every 

value between a 1/100th of the OEL and 100 times the OEL is equally likely, which is a uniform 

distribution on the range “OEL/100-100*OEL”. Then this distribution (called the “prior” 

distribution) is updated with the information collected (i.e., the measurements) through a 

statistical model (in this case it is assumed that exposure measurements follow a lognormal 

distribution). The result of the analysis is an updated probability distribution (called posterior), 

from which point estimates and confidence limits can be derived. 

One considerable advantage of this framework relates to the flexibility in defining the prior 

distribution: our example demonstrated what is called an uninformative prior, i.e., it contained 

very little information on P95. In that case, the posterior distribution will mostly rely on the 

observations. However, it is possible to define an informative prior distribution, i.e., something 
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is known of P95 in advance of collecting new data. This ability has been used in industrial 

hygiene for example using the output of mechanistic two-zone models to define the prior 

distribution of exposure parameters (Zhang et al., 2009). 

 

In this project, we set up a Bayesian model which allows us to combine information from the 

silica prediction model with a new data set of exposure measurements which might have been 

collected for a particular situation. The advantage of this combination is that both sources of 

information are limited on their own: the model is based on a lot of data, but provides 

estimates for generic scenarios and might not be entirely representative of any particular 

settings; on the other hand, measurement sets for any particular situation tend to be small, and 

though more relevant in theory, their small size renders direct extrapolation for risk assessment 

hazardous. The combined exposure estimate therefore results in an overall improved 

assessment. 

 

The framework for building this Bayesian model was based on the WEBEXPO project 

(https://www.irsst.qc.ca/en/publications-tools/publication/i/101066/n/webexpo). The library of 

Bayesian models built within WEBEXPO was extended to include a type prior distribution 

defined by the output of a statistical model such as the SCT model.  

  

2.4.4 Developing improved user interface 

 
The prediction model (2.4.2) and Bayesian model (2.4.3) were combined into an online 

prototype for an improved user interface for risk assessment. The aim was first to allow users to 

select a prediction scenario closest to their exposure situation of interest, and see what this 

scenario entailed in terms of risk according to the silica database. In a second step, the user 

could enter measurement data relevant to his situation, and see what these data alone entailed 

in terms of risk. Finally, the user would be shown the result of the combined analysis, merging 

the information from both sources of information. A “recap” page would show the three sets of 

information on the same page for comparison purpose.   
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3 Results 
 
 
3.1 Respirable Crystalline Silica Exposure Assessment 
 
Fourteen Manitoba construction companies participated in this part of the study. Due to 

untypical spring and fall weather and the onset of the global Covid-19 pandemic, the worksite 

monitoring phase was extended and took place over two construction seasons, between June 

2018 and August 2020. The majority of measurements (55%) were obtained during summer 

months between June and August, and the remainder sampled in the months of September 

and October.  

 
A total of 121 measurements were made. Seventy-four measurements (61%) were obtained in 

urban Winnipeg, and the rest in smaller municipalities of Manitoba. Our exposure 

measurements were short-term, task-based samples of average duration of 55 minutes (range 

10 minutes to 130 minutes).  

 
Table 2 shows the summary statistics for RCS exposure concentrations. Overall RCS had a 

geometric mean of 0.033 mg/m3 (arithmetic mean 0.26 mg/m3). The GSD for RCS was 7.0, with 

the minimum and maximum concentration being <0.0003 mg/m3 and 9.3 mg/m3 respectively. 

Table 2 also shows recent results from recent Alberta and British Columbia sampling 

campaigns (also by the authors) for comparison purposes. 

 
 
Table 2:  Descriptive Statistics for Respirable Crystalline Silica Exposure by Province  

Province N (%) %ND 
(<LOD) 

GM 
(mg/m3) 

GSD MIN 
(mg/m3) 

MAX 
(mg/m3) 

Manitoba 121 (32) 37% 0.033 7.0 < 0.001 9.3 

Alberta 129 (35) 29% 0.060 9.3 < 0.004 8.2 

British Columbia 123 (33) 19% 0.044 4.3 < 0.005 3.5 

 
 
Table 3 shows the measured exposure by company. The number of samples varied by 

company, from two (site #2) to 41 (site #7). Site #1 had the highest average concentration of 
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RCS (N=10 samples). Site 14 had the lowest average concentration. Nine of the fourteen 

companies participating had GMs over the Manitoba OEL of 0.025 mg/m3). 

Table 3: Company data (highest to lowest Geometric Mean exposure) 

ID N 
GM  

mg/m3 GSD 
MIN 

mg/m3 
MAX 

mg/m3 
1 10 0.489 3.8 0.046 9.300 
2 2 0.230 1.5 0.170 0.310 
3 4 0.207 8.0 0.016 1.700 
4 4 0.083 2.1 0.035 0.160 
5 5 0.064 2.6 <0.041 0.200 
6 3 0.051 35.8 <0.013 3.200 
7 41 0.040 6.6 <0.001 2.900 
8 4 0.031 6.9 <0.001 0.240 
9 10 0.030 3.4 0.009 0.350 

10 5 0.013 11.5 <0.007 1.000 
11 2 <0.021 1.0 <0.021 <0.021 
12 5 <0.026 1.7 <0.007 <0.026 
13 22 0.007 2.9 <0.005 0.250 
14 4 < 0.013 1.1 <0.011 <0.013 

121 121 0.0331 7.0 < 0.001 9.3 
 

Most projects (Table 4) measured were renovation (45%) followed by new construction (40%).  

Both new construction and other not specified projects had similar levels of average RCS 

concentration (GM 0.0163 and 0.0166 mg/m3 respectively). Minimum RCS exposure occurred 

in demolition while maximum exposure occurred in renovation projects. 

  

Table 4: RCS exposure concentrations by project type (by descending GM) 

 N GM 
(mg/m3) GSD MIN 

(mg/m3) 
MAX 

(mg/m3) 
Renovation 54 0.084 5.1 <0.110 9.300 
New Construction 49 0.016 6.5 <0.005 3.200 
Other/not specified 14 0.017 4.0 <0.006 0.250 
Demolition 4 0.008 22.3 <0.001 0.260 
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For this study, work tasks were categorized into nine groups based on material and tool used 

(see Table 5). The most common task measured was cutting and sawing (33%). Demolition had 

the highest average RCS GM concentration; however, only two samples were from that task. 

Grinding tasks had the greatest variability in RCS exposure (GSD = 12.4). 

 

Table 5: RCS exposure concentrations by broad work task type (by descending GM) 

 N GM 
(mg/m3) GSD MIN 

(mg/m3) 
MAX 

(mg/m3) 
Demolition 2 0.612 1.3 0.500 0.750 
Breaking 19 0.105 10.5 <0.001 9.300 
Grinding 14 0.073 12.4 <0.009 3.200 
Cutting/Sawing 33 0.055 4.7 <0.010 1.700 
Drilling 7 0.026 2.3 <0.021 0.100 
Cleaning 7 0.015 3.2 <0.007 0.170 
Mixing/Pouring 16 0.010 2.9 <0.007 0.310 
Moving and/or Crushing Rocks and/or Earth 21 0.009 4.1 <0.005 0.250 
Other 2 0.007 1.0 <0.013 <0.013 

 
 
The most common material being handled during our exposure monitoring was concrete, 

though in various forms. Concrete handling gave an average RCS exposure of 0.005 mg/m3 

while the least commonly used material was cement, which also had the highest average RCS 

concentration (GM 0.083 mg/m3). 

 

Table 6: RCS exposure concentrations by Material Type (by descending GM) 

Material N 
GM 

(mg/m3) GSD 
MIN 

(mg/m3) 
MAX 

(mg/m3) 
Cement 4 0.083 2.1 0.035 0.160 
Concrete 74 0.052 8.8 <0.001 9.300 
Asphalt 33 0.039 2.3 <0.041 0.100 
Stone 7 0.032 5.5 <0.012 0.250 
Gypsum and jointing material 14 0.023 1.7 <0.021 0.056 
Other 6 0.008 1.2 <0.013 0.010 
Various Material containing sand 13 0.005 2.0 <0.005 <0.028 
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The work environment also impacts RCS concentration. Fifty-four percent of the samples in this 

study were collected outdoors, which had the widest range of measurements (GSD 8.2). 

Samples taken in restricted spaces (N=4) had the highest average concentration compared to 

other work environment (GM 1.132 mg/m3).  

 

Table 7: RCS Exposure Levels by Work Environment (by descending GM) 

 N GM (mg/m3) GSD 
MIN 

(mg/m3) 
MAX 

(mg/m3) 
Restricted Space 4 1.132 2.0 0.600 2.900 
Indoors 51 0.039 4.2 <0.007 0.750 
Outdoors 66 0.024 8.2 <0.001 9.300 

 

 
Another important factor that influences RCS concentration is the use of controls such as 

vacuums or wetting. Of all the samples, 77% did not use control strategies (n= 93). The highest 

average RCS concentration were found in samples that used local exhaust ventilation that is 

not attached to the work tool (GM 0.230 mg/m3), although there were only 2 such samples. 

The lowest average concentration was in samples that used exhaust ventilation and wetting 

(GM 0.18 mg/m3, n = 4).  

 

Table 8: RCS Exposure Levels by Control Type (by descending GM) 

 N GM GSD MIN MAX 
Local Exhaust Ventilation 2 0.230 1.5 0.17 0.310 
Exhaust Ventilation on Tool 21 0.038 5.2 <0.007 1.100 
Uncontrolled 93 0.032 7.6 <0.001 9.300 
Water Spray on Tool 1 <0.041 NA <0.041 <0.041 
EV+ Wetting 4 0.018 6.0 <0.012 0.250 

 

 
3.1.1 Provincial Differences 
 
We compared our findings in Manitoba with recent results from similar exposure surveillance 

done in the provinces of Alberta and British Columbia (Gorman Ng and Davies, 2018). 
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Manitoba (Table 2) had the lowest overall average concentration for RCS (GM 0.33 mg/m3). 

The sample variability for RCS (GSD 7.0) was lower than Alberta (GSD 9.3) but higher than BC 

(GSD 4.3). However, Manitoba had the highest measured RCS concentration across all three 

provinces (9.3 mg/m3). 

 
We further investigated these regional differences in a multiple linear regression model, which 

also allowed us to examine other determinants of exposure to RCS simultaneously (Table 8). 

The final model created accounted for 37% of the variability in RCS exposure. In this model, 

Manitoba had one-half the RCS concentration compared to Alberta, and one-third of BC 

exposure levels, when all other factors such as task, material, environment, controls were 

controlled for. 
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Table 9: Multiple Linear Regression Model (adjusted R2 = 0.37, Total N= 373) 
 

N Beta AntilogBeta 
(partial F-Test) 

 
 ( 

(Partial F-test) 

P value 

Province    (< 0.001)   
Alberta 129 REF REF REF 
British Columbia 123 0.4097 1.50637 0.124314 
Manitoba 121 -0.6502 0.52194 0.004379 
Task  

 
(< 0.001) 

 

Other 35 REF REF REF 
Breaking 44 2.6308 13.88487 <0.001 
Cleaning 22 1.1953 3.30455 1.08E-02 
Cutting/Sawing 67 2.511 12.31724 <0.001 
Demolition 10 1.9312 6.89778 <0.001 
Drilling 26 1.2928 3.64297 0.004599 
Grinding 53 2.2632 9.61380 <0.001 
Mixing and Pouring 37 0.1815 1.19901 6.74E-01 
Moving and/or Crushing Rocks and/or 
Earth 

65 0.7302 2.07550 0.087413 
Spraying 7 0.9254 2.52288 0.18337 
Environment  

 
(< 0.001) 

 

In 194 REF REF REF 
Out 158 -0.4839 0.61637 0.022691 
Restricted Space 21 1.519 4.56766 <0.001 
Material  

 
(< 0.001) 

 

Not Specified 10 REF REF REF 
Other (brick, ceramic, mortar and 
gypcrete) 

29 0.4971 1.64395 4.70E-01 
Asphalt 14 -0.6081 0.54438 0.419584 
Concrete 191 0.2185 1.24421 0.72208 
Cement 38 0.6918 1.99731 0.265915 
Sand 46 0.8357 2.30643 0.177637 
Gypsum and joint material 31 -1.5222 0.21823 0.022463 
Stone and Granite 14 0.9259 2.52414 0.183725 
Sampling Duration Category  

 
(< 0.001) 

 

0.32 -103 minutes 280 REF REF REF 
104- 240 minutes 32 -1.1835 0.30621 <0.001 
241- 390 minutes 44 -0.8974 0.40763 <0.001 
391- 12480 minutes 17 -0.9769 0.37648 0.031432 
CSP Control  

 
(< 0.001) 

 

Uncontrolled 240 REF REF REF 
LEV 37 -0.839 0.43214 0.008548 
EV on tool 62 -0.8584 0.42384 0.002271 
Water spray on tool 12 -0.6287 0.53328 0.248427 
EV+ Wetting 22 -1.0977 0.33363 0.015507 
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3.2 Risk Assessment Tool Updates 
 
3.2.1 Improvement of the current SCT prediction model 
 
As described in the methods, the updated prediction calculation and associated uncertainty 

are now based on matrix calculation and multi-model inference. Appendix 3 describes the 

calculations in detail. In brief, one complication is that the model is fit to 20 datasets. This is 

due to the format of the historical database, where several results are not individual datapoints 

but summary results. As described in Lavoué et al. (2007) and Sauvé et al. (2012 & 2013) these 

summary results were used to estimate individual measurements using Monte Carlo simulation. 

For example, for a study reporting exposure in the form of GM and GSD for 15 measurements, 

we would simulate 15 random values from a distribution with the same GM and GSD. The 

simulated values are thereafter mixed with the individual values for the modelling. In order to 

take into account simulation variability, the simulation was performed 20 times, hence the 

model has to be fit to 20 datasets. The predictions for a particular scenario therefore have to 

be averaged across the 20 model fits, and variability across the 20 models needs to be taken 

into account in the final uncertainty estimates.  

 
3.2.2 Improvement of the risk metrics calculated from the SCT model 
 
Figure 3 below shows how an example use of the risk assessment framework from British 

Columbia was implemented, where the main risk metric is the geometric mean (GM) of the 

distribution of workers’ exposures. Risk is considered controlled if the GM is below the OEL (in 

this case, we are using an OEL of 0.1 mg/m3). The figure is a screenshot from the prototype 

web application developed during this project. 

 

The data analysed is a simulated dataset of 9 silica measurements: 0.070 / 0.082 / 0.080 / 

0.025 / 0.081 / 0.025 / 0.050 / 0.055 / 0.006 mg/m3. 
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Figure 3: plot output of the new silica prototype for a simulated dataset (analysis according to the British Columbia 
risk analysis framework). 

 
The point estimate of the geometric mean is 0.04 mg/m3, with a 95% upper confidence limit of 

0.07 mg/m3. The plot shows the uncertainty distribution of the geometric mean, i.e., a 

histogram of 25,000 possible values for the GM generated by the Bayesian model. The plot 

also illustrates the probability that the true GM is above the OEL, i.e., the proportion of the 

histogram above the OEL: 0.65%. In this case we are very confident that the GM of the 

exposure distribution is well below the OEL of 0.1 mg/m3.  

 

Figure 4 below shows the results of the analysis using the second available risk analysis 

framework, advocated by the AIHA, where the main risk metric is the 95th percentile (P95). 
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Figure 4: plot output of the new silica prototype for a simulated dataset (analysis according to the AIHA analysis 
framework). 

 
The point estimate of the 95th percentile of the exposure distribution is 0.18 mg/m3, above the 

OEL, and the corresponding 95% upper confidence limit is 0.64 mg/m3. The graph in Figure 4, 

which splits the uncertainty distribution of the 95th percentile into 5 risk management 

categories, shows, unsurprisingly, a very high probability (94.4%) of the situation corresponding 

to a true 95th percentile above the OEL (of 0.1 mg/m3). In this case we are therefore confident 

that the situation represents unacceptable exposure in this framework.  

 
3.2.3 Bayesian model for combining the model prediction with a “new” silica dataset  
 
As mentioned in the Methods section, we adapted one of the models described in the 

WEBEXPO scientific reports which serves as the backbone of the Expostats data interpretation 

toolset (Lavoué et al., 2018). Appendix 4 describes the mathematics of the new model. In 

essence, the uninformative prior on the geometric mean in the Expostats model (InformedVar 

in Appendix 4) was modified for the purpose of this project. Instead of being uniform (in the 

log scale) over a wide range, the new prior is in the shape of a normal distribution defined by a 

mean and standard deviation, which matches exactly the improved output of the silica 

prediction model (see 3.2.1 and Appendix 3).  A technical web application was first built that 
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ran this model and the normal Expostats model concurrently, to help the research team 

explore the influence of the new information on the final exposure estimates. This test app is 

available at https://lavoue.shinyapps.io/SilicaBC/. 

 

As an illustration, Figure 5 below shows an example comparing the uncertainty distribution 

around the geometric mean (in a similar fashion as Figure 1) as predicted by the prior alone 

(the silica prediction model) in the top part, a simulated “new” dataset (n=9 samples) alone 

(obtained through the Expostats model), and the posterior distribution obtained using the new 

Bayesian model, which combines information from the prediction model and the new data. In 

this example the prior information suggest a very low GM compared to the OEL (using an 

example OEL of 0.15). In the middle part of the graph, the 9 measurements suggest a 

somewhat higher GM value, although still low compared to the OEL. The final combined 

uncertainty distribution illustrates the Bayesian process of updating the prior information with 

the new data, the final (posterior) information clearly appearing an “average” of the 2 other 

distributions. As both the “prior” and “data” uncertainty distributions for the GM reflect similar 

uncertainty (both are fairly flat and spread across a wide range), the averaging seems quite 

balanced (i.e., both distributions have a similar influence on the final estimate). 

 

Figure 6 shows the same process but this time the sample size for the new data was 50. The 

greater sample size is reflected in the “data” distribution, this time reflecting much lower 

uncertainty about GM than the prior (much narrower histogram). As a consequence, the 

posterior distribution is almost equal to the “data” distribution. This is an illustration of data 

overwhelming the prior.  
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Figure 5:  Example of updating an informed prior distribution with new data (n=9). 

 
 

 
Figure 6: Example of updating an informed prior distribution with new data (n=50). 
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3.2.4 Developing improved user interface 
 

The silica prediction model and the Bayesian models described above were integrated in a 

javascript web prototype for a risk assessment tool providing results according to both the 

British Columbia and AIHA risk decision framework. One aim was to allow users to see the 

results from the silica model prediction alone, from a “new” dataset alone, and from their 

combination using the newly available Bayesian model. 

Figures 7 and 8 below showcase this prototype, now fully functional and available from 

https://silica.expostats.ca/. Figure 7 shows the main entry point, where the first step consists in 

selecting a prediction scenario using the exposure determinants included in the Silica model. 

After selecting the scenario and the OEL, the user is shown the results of both risk decision 

frameworks (BC and AIHA) according to the historical database. In step 2, the user can enter 

their own measurement data, and the Expostats Bayesian model is run to show the risk analysis 

based only on just these data. In step 3, the user is shown risk analysis results from the 

combination of both sources of information. Finally screen 4 (shown in figure 8) is a recap of 

the three steps, when users can see the effect of updating the silica prediction model estimate 

with the new data as shown, e.g., in Figure 3 and 4. 
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Figure 7: Entry point of the Silica risk prediction prototype 

 
Figure 8: Recap screen of the Silica risk prediction prototype for the AIHA risk decision framework 
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4 Discussion  
 

4.1 Respirable Crystalline Silica Exposure in Manitoba Construction Industry 
 
This study found levels of RCS in MB construction industry that were similar levels found in 

contemporary studies in Alberta and British Columbia. The mean level found in MB (geometric 

mean = 0.033 mg/m3) was the lowest of the three provinces but the mean still exceeded the 

Manitoba OEL (and the health-based ACGIH TLV-TWA®) of 0.025 mg/m3. 

 

The variability in the 121 personal exposure measurements (GSD = 7.0) indicates that the 

measurement observations are strongly skewed, A few measurements had very high 

concentrations. The maximum value observed (9.3 mg/m3, while jackhammering dry concrete 

without dust controls) was the highest of any measurement in recent sampling campaigns by 

the authors in Alberta, BC or Manitoba. Such high levels (approximately 300 times above the 

ACGIH TLV-TWA®) are concerning. There have been recent outbreaks of silicosis and other 

respiratory symptoms associated with relatively short exposures to similarly high levels of RCS, 

and acute silicosis (also known as silicoproteinosis) can occur within 1-10 years of higher 

exposures in the range of 1-10mg/m3/year (Tustin, 2022; Barnes et al, 2019; Rose et al., 2019). 

 

Nine of the 14 companies sampled had (geometric) mean exposure levels over the TLV-TWA® 

of 0.025 mg/m3. Note that this should only be used as a relative indicator of the degree of the 

observed exposure levels and not a statistically rigorous compliance test; nevertheless, it does 

indicate that over-exposure to RCS is likely a wide-spread problem in construction in Manitoba. 

 

Our exposure measurements were short-term, task-based samples of average duration of 55 

minutes. If employee exposures during a typical shift are lower (for example because 

employees undertake a variety of tasks, some with lower exposure levels) then the actual 8-

hour average exposure may be lower and thus our estimates may be considered to be over-

estimates and therefore overly protective. However, over protection should not be assumed. 

Many construction projects are completed by specialty subcontractors who may undertake the 



      Respirable Crystalline Silica in the Manitoba Construction Sector 28 

same tasks repeatedly for long periods throughout the day. Furthermore, there are many 

construction activities that generate RCS so background exposure levels are often greater than 

zero. 

 

Our measurements were all obtained on active worksites during normal construction activities, 

and therefore should be broadly representative of conditions expected at any Manitoba 

workplace. It is possible that employers who volunteered to participate may in fact be 

considered more likely to be better informed about OHS hazards and silica, and therefore have 

“cleaner” sites than the average. This would then mean that our observed values might 

underestimate true RCS exposures in Manitoba construction sector. 

 

4.2 Determinants of exposure 
 
We used linear regression analysis to examine the factors influencing RCS exposure levels on 

worksites. Variable examined were province, work task, environmental setting (indoor/outdoor, 

etc.), construction material, duration of measurement, and type of dust control. The modeling 

we performed explained approximately 40% of the observed variability. The estimates in Table 

9 show the relative difference from a base model; for example, compared to Alberta (the 

reference province) and holding all other variables constant, BC RCS measurements were 50% 

greater while MB measurements were on average half of Alberta levels.  

 
4.2.1 Regional differences  
 
Some of the differences observed between provinces may be due to systematic differences in 

the sampling conditions between provinces (for example, more MB measurements were made 

outdoors, or in MB we measured task types producing less RCS dust). Many of these factors 

were included in the regression model and thus “accounted for”. Because the measurement of 

these factors was imperfect, some of the observed variability likely still comes from these 

factors, however some will also be coming from factors we did not measure and can be 

considered to likely vary on a regional basis.   
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One source of regional difference may be differences in the basic silica-containing materials. 

For example, the material involved during various construction tasks may be different (e.g., 

gypsum vs sand lime) or the formulation of material may vary (percent of sand in a particular 

concrete mix) and/or the geographic source of material due to regional geological variation.  

 
The formulation of material may contribute to differences in RCS released. For example, most 

concrete is composed of sand, aggregate rocks and paste (cement mixed with water) where 

sand and aggregate rocks usually contain high silica content. An industrial project using 

concrete that is 30% sand, 40% aggregate and 30% paste would release different amount of 

silica if the formulation and percentage of sand and aggregate changes. Higher sand and 

aggregate percentage would likely lead to higher RCS concentration. Additionally, industrial 

projects process concrete mixture for longer; thus, pushing the sand and aggregate into lower 

layers and have more paste on the surface of the material, which contain little to no silica 

(Flanagan et al., 2006).  

 
Using the same concrete example as above, silica content may differ depending on which type 

of sand and aggregate rocks are used and where they are sourced. We expect that 

construction companies in Alberta, BC and Manitoba would source their material locally and 

the local geological environment may produce different types of rocks. For example, rocks in 

BC are composed of volcanic, intrusive and some metaphoric rocks. Manitoba has mostly 

sedimentary rocks with some intrusive and little volcanic rocks and Alberta has mostly 

sedimentary rocks (Government of Canada Atlas of Minerals and Mining, 2020). High 

percentages of crystalline silica quartz are commonly found in sedimentary rocks (ie. 

sandstones) and metamorphic rocks, which are more typical of rock types in Alberta and 

Manitoba (Carmichael, 1989; Atkinson & Atkinson, 1978; US Bureau of Mines, 1992; Heaney & 

Banfield, 1993; Ross et al., 1993; IARC,1997 p65). This is consistent with our study where 

Alberta had the highest average RCS concentration compared to BC and Manitoba. However, 

Manitoba had the lowest average RCS concentration which is inconsistent with the expectation 

that metamorphic rocks have high concentration of RCS.  
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4.2.2 Other sources of variability 
 
We found exposure level varied by construction project type. Other studies have also found 

that demolition tasks are associated with high RCS exposure relative to other construction 

tasks. Demolition often involves various materials using wide range of tools from handheld 

hammers for tile removal to small bulldozers to push over walls (Lumens & Spee, 2001; Nij et 

al., 2004; Radnoff et al., 2014).  

 

Task explained most of the variability in RCS concentration. For our study, task type is defined 

by the combination of task, tools, and material, which are all factors that can influence RCS 

exposure.  Other studies have also reported similar breaking tasks having high RCS 

concentration (Flanagan et al., 2006; Si et al., 2016). Grinding may be highly variable due to 

different types of tools and technique used such that the amount of RCS released may be 

determined by grinder diameter, surface area, wheel type and rotation rate. For example, 

Flanagan et al. (2003) showed that a 4.5-inch grinder released 33% less RCS than a 7-inch 

grinder while abrasive wheel released 60% less RCS compared to a diamond wheel. The 

grinding technique also mattered such that side-to-side movement and excessive force used 

on grinder may release more RCS from the material during mortar removal and renovation 

(Flynn & Susi, 2003). 

 
Regression modeling (Table 9) shows that engineering controls such as LEV and wetting of 

surfaces or tools can have a significant impact on exposure levels reducing them on the order 

of one-half. 

 

4.3 Improving risk assessment tools for RCS 
 
Occupational hygienists widely agree on the importance of quantitative exposure 

measurement (Kromhout, 2016) for compliance monitoring, but also control selection, 

intervention evaluation, surveillance of trends in exposure and for education purposes.   Yet, 

even where exposure data is available, data interpretation techniques remain complex, and 
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largely in the domain of a subset of industrial hygienists (Lee et al., 2019).  The authors 

previously addressed this in British Columbia by developing the “Silica Control Tool” with the 

aim of providing timely, quantitative risk assessments for complex work environments, and 

combining ease-of-use for non-experts, cost-effective data collection, data mobilization, and to 

drive continuous improvement in terms of controls (Davies and Gorman-Ng, 2020).  

 

The limitations of the online tool presented opportunities for improvement. In particular, the 

original statistical modeling and estimating tool, while adequate, did not provide a means to 

incorporate new exposure measurement data into the database in a way that efficiently utilizes 

both old (available in quantity, less specific) and new data (very few measurements but more 

specific). In addition, typical occupational hygiene exposure metrics (geometric mean, 

geometric standard deviation, 95th percentile) are often difficult to interpret even for OH 

professionals.  

 

This project has significantly improved the core functioning of the tool by (i) incorporating 

Manitoba-specific data to the underlying database used in modelling and predicting RCS 

exposures; (ii) re-coding the core statistical processes to make them more efficient and robust; 

(iii) enable the end-user to enter their own exposure data and have it modelled “in context” of 

the wealth of historical data and (iv) create a new results dashboard with multiple risk-

assessment formats. 

 

The ability to combine modeling predictions with exposure data has been identified as a 

limitation of current methods and tools and this study has contributed significantly to 

overcoming this problem in a practical manner (Ramachandran, 2019). These technical 

improvements are ready to be migrated into the BCCSA silica control tool in a future project. 

The improvements also offer tremendous potential to be generalized as an end-user tool for 

any occupational exposure database, for example the Canadian Workplace Exposure 

Database, or CWED (https://cwed.spph.ubc.ca/).  
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4.4 Review of work completed  
 
The project met its overall aim of improving understanding of RCS hazard in Manitoba 

construction industry by: 

1. Undertaking a large exposure monitoring campaign over two construction 

seasons. This comprised (see Section 3.1): 

• Identifying appropriate “common silica-producing processes” for Manitoba 

industry (for planning and prioritizing sampling strategy) 

• Recruiting fourteen MB construction companies  

• Obtain, analyze and report results from 121 personal respirable crystalline 

silica (RCS) exposure samples  

2. Improving RCS exposure data holdings vis-à-vis regional, contemporary and new 

exposure scenarios. This comprised (see Section 3.1.1): 

• RCS exposure data base available from authors on request 

• Incorporated MB RCS exposure data into BCCSA SCT database 

3. Characterizing RCS exposure situation in MB construction, and comparing to 

other Canadian regions. This comprised (see section 3.1.1): 

• Data cleaning and coding 

• Undertook statistical analysis to examine the determinants of RCS exposure 

levels including region 

4. Improve modeling and estimation methodology. This comprised (see section 

3.2.1 – 3.2.4): 

• Improvement of the current SCT prediction model 

• Improvement of the risk metrics calculated from the SCT model 

• Bayesian model for combining the model prediction with a “new” silica 

dataset 

• Developing improved user interface 
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4.5 Recommendations 
 

The findings of the study suggest that the levels of RCS to which Manitoba construction 

workers may be exposed are consistent with levels observed in other region of Canada, 

and other countries. The findings, taken in context of other work and general OHS 

principles led to a series of recommendations: 

 
  
4.5.1 RCS safety: recommendation to regulator, employers, safety associations 
 

Referring to OHS hierarchy of controls (Figure 9), there are clearly opportunities for 

controlling exposure from RCS at all levels. Our study did not record or report on PPE use 

in study participants but the limitations of PPE (in this case, respiratory protection) is well 

known. When working with RCS if PPE is to be used it should be as part of a well-managed 

respirator program that ensures correct type of respirator is used, it is well-fitted, 

maintained and worn when needed. 

 

 
Figure 9: The OHS Hierarchy of Controls (courtesy WorkSafeBC Website) 

 
With respect to eliminating the RCS exposure hazard, while it is challenging to eliminate 

the materials containing crystalline silica there may be opportunities to eliminate the tasks 

that produce high levels of RCS exposure. In our study that might mean trying to reduce 
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demolition tasks, breaking, and grinding. This might be achieved through changes in how 

work is designed – like using better concrete forms to reduce the amount of grinding 

required. 

 

Our findings showed the benefit of tool-based (engineering) controls (wetting and exhaust 

ventilation) when used in tandem; however, use of controls mounted on tools did not result 

in greatly reduced exposure levels, when used individually.  This may point to the fact that 

these engineering solutions also require proper specification, maintenance and use to be 

effective. Use of general local exhaust ventilation was associated with an increase in 

exposure level in our study but there were only two measurements on which to base this 

finding and so they could be non-representative. Further, LEV may have been used in this 

instance because exposure levels were expected to be high. 

 

Vis-à-vis administrative controls, the findings of this study are useful to inform training 

materials for employees, OHS specialists and management around RCS hazards and 

controls. Further, quantitative exposure estimates using data such as that available from 

this study allows for planning of job-rotation that can limit average exposures over time. 

 
 
4.5.2 Knowledge Translation: recommendations for researchers, regulators 

 
The findings of this study can be used to inform educational materials with respect to: (i) 

silica health hazard; (ii) hazardous exposures to RCS; (iii) controlling RCS exposure. Target 

audiences include employees, employers, apprenticeship trainers, health and safety 

regulatory officers, claims adjudicators and others in compensation and prevention. 

 

The findings of this study should be presented in two scientific papers: (i) on the exposure 

assessment of RCS in Manitoba (a draft manuscript has already been prepared by the 

authors) and (ii) a scientific paper describing the process of developing the enhanced 

statistical “engine” for the Silica control Tool, and the new end-user “dashboard”. 
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The researchers should report the findings of the study to the Manitoba construction 

Industry and other stakeholders in 2022 at an appropriate construction meeting (for 

example the CSAM safety conference). 

 
4.5.3 Silica Control Tool upgrades 

 
Upgrades to the computer programming of the BCCSA Silica Control Tool 

(https://lavoue.shinyapps.io/SilicaBC/) as well as the new end-user interfaces for risk 

assessment (https://silica.expostats.ca/) should be integrated into the Tool. The 

researchers will seek additional grant funding for this step. 
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Appendix 1 Common Silica Processes 
 
CSP according to the data dictionary that combines task, tool and material 
Code Description 
1 Not Specified/Other 
2 Cutting Asphalt with walk-behind saw 
3 Milling Asphalt with milling machine 
4 Cutting concrete masonry unit with water-fed table saw 
5 Cutting concrete masonry unit with portable saw 
6 Cutting concrete with saw 
7 Coring concrete with coring machine 
8 Drilling concrete with electric hammer drill 
9 Grinding concrete with surface, angle or flat grinder 
10 Grinding concrete with counterbalanced ceiling grinder 
11 Grinding, Preparing and finishing concrete - other 
12 Scarifying or bush hammering (concrete) 
13 Demolition (any material) 
14 Sweeping (any construction area) 
15 Shot-creting 
16 Cutting tiles with powered tile saw 
17 Manual moving of small rocks, soil, etc 
18 Mechanized moving of rocks, soil, etc. 
19 Crushing and processing rock/sand/earth 
20 Cutting marble/granite 
21 Cutting drywall 
22 Sanding drywall 
23 Mixing and pouring cementicious material 
24 Tuckpoint grinding 
25 Spraying 
26 Other masonry-related tasks 
27 Other roadwork 
28 Breaking concrete with jackhammer 
29 Breaking  - other 
30 Other cutting 
31 Abrasive blasting 
32 Tunnel boring 
33 Installation of acoustic ceiling tiles 
34 Other surface grinding 
35 Installation of concrete formwork 
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36 Other cleaning 
37 Other drilling 
38 Foundation work 
39 Electrical maintenance work 
40 Excavation work 
41 Cutting fiber cement board with portable saw 
42 Loading Concrete mixer truck 
43 Crushing and processing Concrete 
44 Cutting concrete with walk-behind saw 
45 Chipping Concrete 
46 Mixing Gypcrete 
47 Walk-behind concrete grinding 
48 Power Sweeping Concrete 
49 Concrete Breaking with Excavator 
50 Drilling Rock  
51 Asphalt breaking with Excavator 
52 Cement plant helper 
53 Cement Plant Operator 
54 Cement Loader operator 
55 Cement truck driver 
56 Cement Plant Mechanic 
57 Cement Plant Lead Hand 
58 Asphalt Plant Operator 
59 Asphalt Loader Operator 
60 Asphalt  Truck loading 
61 Asphalt Plant Helper 
62 Concrete Breaking with Excavator with Jackhammer Attachment 
63 Cutting concrete with electric wire saw 
64 Indoor mini batch plant operator 
65 Sweeping drywall 
66 Shotblasting 
67 Hosing during concrete demolition with excavator 
68 Pinning Wood to Concrete 
69 Screeding Concrete with Gas-powered screed 
70 Concrete floor scraping 
71 Cutting Artificial Stone Countertops 
72 Polishing Artificial Stone and/or Granite Countertops 
73 Grinding  Artificil Stone Countertops 
74 Vacuuming Drywall 
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75 Mechanical Street Sweeping 
76 Cleaning vacuum filters 
77 Concrete Drilling (Overhead) 
78 Concrete dowel drilling 
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Appendix 2: Worksite Data Collection Form 
 

Field Form Observation Sheet 

Site Location:  

Date:  

Sample ID:  

Common Silica Process (CSP):  

Worker Job Title:  

Shift Length:  

Task Duration:                     Regular Task Duration:                           How many times task takes place during a normal shift:   
General Observations/Comments:   
  

Engineering Controls in place:    YES   or    NO      (circle one)     - Sample for the CSP is "controlled" or "uncontrolled" (circle one) 

Engineering Controls Description and Observations (i.e., water used, or general LEV, or LEV on tool - make/model/description/age):   

Sub-Tasks Observed during the CSP:  

Materials Involved in CSP:  

Materials MSDS Available:    YES   or    NO     (circle one);                          If YES, silica %: 

Tools Used (make/model/description):  

PPE Worn/Used:   

Work environment: Temperature:         Precipitation:             Pressure:            Wind:                  Indoors / Outdoors (circle one) 

Environment/Work Area Description (indoors/outdoors, confined space, enclosed, partial, etc…): 

Construction type: New build or Renovation (circle one)       

Site Category:  Residential                  Industrial             Institutional/Commercial               Civil/Roadwork                   Other: 

Outside Temperature:                Precipitation:                  Pressure:                     Wind:    

Photos taken: Yes or No                                    Photo ID (if applicable): 

Environmental Conditions/Observations:   
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Appendix 3: Estimating modelling uncertainty across 20 model fits 
 
 
Notation:  
 
Y is a n*1 vector of log-transformed exposure levels 
 
β is the p*1 vector of model coefficients, with p the number of parameters in the model 
 
Xh is p*1 the design vector for the prediction scenario of interest 
 
y_hat is the predicted mean for the scenario of interest. 
 
 
 
Single model uncertainty1 
 
Y_hat is given by 𝑦!"# = 𝑋!$β     (1) 
 
The variance of Y_hat (prediction error) is 𝑣𝑎𝑟%!"# = 	𝜎&(𝑌!"#) = 𝑋!$𝜎&(𝛽)𝑋!    (2) , with 𝜎&(𝛽) the 
variance-covariance matrix of the model 
 
 
Multimodel uncertainty2 
 
For k model fits (in this project k=20), equations (1) and (2) above provide k values of y_hat and 
var_yhat  
 
The multimodel inference framework provides a way to calculate a prediction averaged over 
the 20 datasets, and, more importantly an estimate of the variability of the final averaged 
prediction, according to the following equations 
 

Averaged prediction: 	yhat'()*'+) =	
∑ %!"#!"
!#$

-
 (3) 

 
Unconditional variance of the prediction: 

 
1 Neter, J., Kutner, M., Nachtsheim, C. J., & Wasserman, W. (1996). Applied Linear Statistical Models: 
Vol. Fourth edi. WCB McGraw-Hill. 
2 Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference : A practical 
information-theoretic approach (2nd éd.). Springer. 
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𝜎&3𝑦ℎ𝑎𝑡"./0"1/6 = 	7
8𝜎&3𝑦ℎ𝑎𝑡26 + 	3𝑦ℎ𝑎𝑡2 − 𝑦ℎ𝑎𝑡"./0"1/6

&:
𝑘

-

234

The standard error on the average prediction is simply the square root of the unconditional 
variance above. 



1 Introduction

This document describes the mathematical basis for the two bayesian models used within this project. 
The InformedVar model, used to analyse measurement data with a generic uninformative prior, 
was previously developped within the Webexpo project. The InformedMean model, developped 
specifically for this project, includes an informative prior for the geometric mean of a lognormal 
distribution, defined by a point estimate and standard error (in the log scale). It was used in this 
project to define an informative prior based on the output of the Silica prediction model, and allows 
the combination of the prediction from the Silica database with new measurement data.

1.1 Generating a sample from posterior distribution via Markov Chain

Monte Carlo (MCMC)

From Bayes theorem, the posterior distribution f(θ|x) for θ given data x is proportional to

f(θ|x) ∝ f(θ)× f(x|θ) ,

where f(θ) is the prior distribution for θ and f(x|θ) is the likelihood function.
In most situations encountered in this work, the posterior for θ does not have an analytic solution

but we can use Markov Chain Monte Carlo simulation to draw a sample from it. When θ consists of
a series of parameters, say θ = (θ1, θ2, . . . , θq), if the full conditional posterior distribution for θi can
be written as a function of other components, that is, if we can write f(θi|θ−i, x), for i = 1, 2, . . . , q
— where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θq) — then the MCMC algorithm is as follows: sample θi
from the above distribution for i = 1, 2, . . . , q, collect the sampled values and repeat a large number
of times; in the long run, the sample collected along these lines converges to a sample from the
posterior distribution f(θ|x).

2 SEG.informedvar – prior

The joint prior distribution for the InformedVar model is given by

µ ∼ U(µ0, µ1)

log(σ) ∼ N(µ∗, σ∗2) (1)

and the likelihood is
Yi ∼ N(µ, σ2)

where the Yi’s, i = 1, 2, . . . , N are independently distributed and can be left-, right- or interval-
censored. The hyperparameter values are µ0 = −101.38161, µ1 = 98.61839, µ∗ = −0.1744 and
σ∗−2 = 2.5523.

1
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The joint posterior for (µ, σ) is hence given by

f(µ, σ|y) ∝ 1

σN
exp

{
− 1

2σ2

∑
(yi − µ)2

}
1

σ
exp

{
− (log(σ)− µ∗)2

2σ∗2

}
Iµ(µ0, µ1) (2)

The full conditional posterior density for µ is thus given by

f(µ|σ, y) ∝ exp

{
− 1

2σ2

(∑
y2i − 2µ

∑
yi +Nµ2

)}
Iµ(µ0, µ1)

∝ exp

{
− N

2σ2

(
µ2 − 2µȳ

)}
Iµ(µ0, µ1) , (3)

that is, µ ∼ N(ȳ, σ2/N) truncated to the interval (µ0, µ1) and the full conditional posterior density
for σ is proportional to

f(σ|µ, y) ∝ 1

σN+1
exp

{
− 1

2σ2

∑
(yi − µ)2

}
exp

{
− (log(σ)− µ∗)2

2σ∗2

}
(4)

Generating MCMC values for µ from its full conditional posterior density (3) is straightforward,
while σ values will be sampled from its full conditional posterior density (4) through the inverse
cumulative density function sketched in Appendix A, with

a = N,

b =
1

2

(∑
y2i − 2µ

∑
yi +Nµ2

)
,

µ̃ = µ∗ and

σ̃2 = σ∗2 .

If there are any right-censored values yi, that is, values specified as yi < zi for some zi’s, then at
each loop in the MCMC process, corresponding yi values are sampled from N(µ, σ2) on the interval
)−∞, zi). Similar sampling is also performed for left- and interval-censored yi values.

2.1 Use of past data

One might want to include past data — available through sample size n, observed mean p̄ and
standard deviation sp — in the analysis. The likelihood of past data p — measured without error
— is given by

f(p|µ, σ) =
1

σn
exp
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− 1

2σ2
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i=1
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}
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1
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2σ2

n∑
i=1

(pi − p̄+ p̄− µ)2

}

=
1

σn
exp

{
− 1

2σ2

n∑
i=1

[(pi − p̄)2 + 2(pi − p̄)(p̄− µ) + (p̄− µ)2]

}

=
1

σn
exp

{
− 1

2σ2

n∑
i=1

(pi − p̄)2

}
exp

{
− n

2σ2
(p̄− µ)2

}
=

1

σn
exp

{
−
(n− 1)s2p

2σ2

}
exp

{
− n

2σ2
(p̄− µ)2

}
. (5)

The joint posterior for (µ, σ) is hence given by the product of (2) and the above likelihood of
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past data, that is,

f(µ, σ|y, p) ∝ 1

σN+n+1
exp

{
− 1

2σ2

∑
(yi − µ)2

}
× exp

{
−
(n− 1)s2p

2σ2

}
exp

{
− n

2σ2
(p̄− µ)2

}
× exp

{
− (log(σ)− µ∗)2

2σ∗2

}
Iµ(µ0, µ1) .

The full conditional posterior density for µ is thus given by

f(µ|σ, y, p) ∝ exp

{
− 1

2σ2

[∑
(yi − µ)2 + n(p̄− µ)2

]}
∝ exp

{
− 1

2σ2

(
Nµ2 − 2µ

∑
yi + nµ2 − 2µnp̄

)}
∝ exp

{
− 1

2σ2

(
µ2(N + n)− 2µ(Nȳ + np̄)

)}
Iµ(µ0, µ1)

=⇒ µ|σ, y, p ∼ N

(
Nȳ + np̄

N + n
,

σ2

N + n

)
Iµ(µ0, µ1)

while the full conditional posterior distribution for σ is

f(σ|µ, y, p) ∝ 1

σN+n+1
exp

{
− 1

2σ2

(∑
(yi − µ)2 + (n− 1)s2p + n(p̄− µ)2

)}
exp

{
− (log(σ)− µ∗)2

2σ∗2

}
.

Values for σ can be sampled from its full conditional posterior density through the inverse
cumulative density function sketched in Appendix A, with

a = N + n,

b =
1

2

(∑
y2i − 2µ

∑
yi +Nµ2 + (n− 1)s2p + n(p̄− µ)2

)
,

µ̃ = µ∗ and

σ̃2 = σ∗2 .

2.1.1 Limitations / warnings

If it is thought that the past data were measured with error, they should NOT be used (indeed, the
above section assumed that the past data was measuread without measurement error).

If the measurement error (in past data) was proportional to true (unmeasured) values — that is,
measurement error would be modeled through a coefficient of variation — they sould DEFINITELY
not be used (the assumptions on which the algorithm is based seem to be violated in a unfixable
fashion).

If measurement error (in past data, again) was constant and relatively small when compared
to σ, they could still be used, but with some caution. Indeed, the above calculations intrinsically
assume that (n − 1)s2p/σ

2 ∼ χ2
n−1, which is NOT the case when past values are measured with

error. If the measurement error is small, then we may not be very far from that distribution and
the algorithm and past data still provide useful results.

If the outcome of interest follows a log-normal distribution (rather than a normal distribution),
then the mean and standard deviation of past data must have been calculated on the log scale as
well in order to be usable.
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3 Adding an informed prior on mean to SEG.informedvar
[InformedMean]

In the original version of the algorithm, the prior distribution for µ is uniform on a specified range
(µ0, µ1). In this section, we consider an alternative where prior information on the mean µ is included
through a Normal prior distribution.

3.1 Context

Suppose that in a previous study pollution data Y ∗ was collected for a series of environmental condi-
tions (indoors/outdoors premices, different concentrations of the potential contaminating product,
different types of workers, etc.), fully described through a design matrix X and that the model
Y ∗ = Xβ + ϵ was fit.

Suppose further that the scenario at stake in our study can be described through a design vector
Xpred (where the variables in Xpred are the same as those in X); then our mean µ could be

estimated through the use of the regression data (Y ∗, X), with µ̂ = X ′
predβ̂.

Remember that if c is a constant matrix (or vector) and θ a vector of random variables, then the
variance of c′θ is given by

V (c′θ) = c′V (θ)c . (6)

From linear regression theory, we know that the MLE for β is given by β̂ = (X ′X)−1X ′Y ∗; hence
the variance of our µ estimate is given by

V (µ̂) = V (X ′
predβ̂)

= X ′
predV (β̂)Xpred from (6)

= X ′
predV

[
(X ′X)−1X ′Y ∗]Xpred

= X ′
pred(X

′X)−1X ′V (Y ∗)X(X ′X)−1Xpred from (6)

= σ̂2X ′
pred(X

′X)−1X ′X(X ′X)−1Xpred since V (Y ∗) = σ̂2I

= σ̂2X ′
pred(X

′X)−1Xpred .

Hence the mean of the estimate µ̂ = µ (by construction) and its standard deviation is given by

sd(µ̂) = σ̂
√
X ′
pred

(X ′X)−1Xpred

where σ̂ is the residuals’ sd from the regression model. The resulting point estimate µ̂ and its
standard deviation (potentially slighly inflated to reflect an imperfect correspondance between the
collected regression data and the currently collected data) can be used as moments, respectively
labeled µr and σr, for the prior distribution for µ.

The regression data also provides information on σ but at this point it was decided to disregard
it and stick to our own prior distribution on σ (through a logNormal distribution, as in the original
version of SEG.informedvar).

3.2 Modifications to SEG.informedvar when using informed prior on mean

In the original model, the full conditional posterior distribution for µ is the product of two terms,
where the first term (l1, below) comes from the likelihood and the second is the prior distribution
function for µ.

The first term of the likelihood, l1(µ|σ, . . .) is given by

l1(µ|σ, . . .) =
{ ∏

i exp
{
− 1

2σ2 (Yi − µ)2
}

when data is Normally distributed∏
i exp

{
− 1

2σ2 (log(Yi)− µ)2
}

when data is log-Normally distributed

4



depending on whether the outcome variable is normally or log-normally distributed, assuming that
it is measured without error.

The second term of the the full conditional posterior distribution for µ, f(µ|σ, . . .) is the prior
for µ, which is f(µ) = Iµ(µ0, µ1) in the original version of the algorithm.

The term l1(µ|σ, . . .) can be rewritten as

l1(µ|σ, . . .) =
∏
i

exp

{
−1

2
λ(µ− zi)

2

}

∝ exp

{
−1

2

(
nλµ2 − 2µλ

∑
i

zi

)}
(7)

where λ and the zi’s are defined differently depending on the data distribution.
Hence the full posterior conditional distribution for µ is given by

f(µ|σ, . . .) = l1(µ|σ, . . . ) · f(µ)

∝ exp

{
−1

2

(
nλµ2 − 2µλ

∑
i

zi

)}
· Iµ(µ0, µ1)

= h(µ;nλ, λ
∑
i

zi, σ) · Iµ(µ0, µ1) . (8)

The algorithm used for sampling from h was described in earlier sections.
By adding an informed prior on µ as described in previous section, that is, by letting

f(µ) ∝ exp

{
− 1

2σ2
r

(µ− µr)
2

}
(9)

the full conditional posterior distribution for µ is changed to

f(µ|σ, . . .) = l1(µ|σ, . . .) · f(µ)

∝ exp

{
−1

2

(
nλµ2 − 2µλ

∑
i

zi

)}
from (7)

· exp

{
− 1

2σ2
r

(µ− µr)
2

}
from (9)

∝ exp

{
−1

2

(
nλµ2 − 2µλ

∑
i

zi

)}
· exp

{
− 1

2σ2
r

(µ2 − 2µµr)

}

= exp

{
−1

2
µ2

(
nλ+

1

σ2
r

)}
· exp

{
−1

2

(
−2µ

[
λ
∑
i

zi +
µr

σ2
r

])}

= h(µ;nλ+
1

σ2
r

, λ
∑
i

zi +
µr

σ2
r

, σ) from (8)

that is, the shape of the full conditional posterior distribution f(µ|σ, . . .) remains unchanged, it
is just its parameters that are changed and its range which is no longer bounded to the interval
(µ0, µ1). Hence the algorithm for sampling from µ’s full conditional posterior distribution remains
unchanged.
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A Generating values for σ from its inverse cumulative den-
sity function

If U is a random variable with a Uniform(0,1) density, then the variable X = F−1(U) has the
cumulative density function F .

This method will be used in the context of WebExpo for σ when its conditional posterior distri-
bution is given by either

f(σ|y, other parameters) ∝ 1

σa+1
exp

{
−b/σ2

}
exp

{
− (log(σ)− µ̃)2

2σ̃2

}
,

as is the case in the InformedVar and Two-Level InformedVar models.
The cumulative density function F (σ) =

∫ σ

−∞ f(σ′)dσ′ does not have an analytic solution but
can be estimated numerically in R with the integrate() function for any value σ.

Hence, one can sample a value U from a uniform U(0, 1) distribution and use a Newton-Raphson
algorithm to find the value for σ such that

F (σ)− F (σ0)

F (σ1)− F (σ0)
= U

where (σ0, σ1) are the boundaries of the σ-domain; the resulting value σ is thus sampled from its
corresponding f posterior density.
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